Use of Visible/Near-Infrared Reflectance Spectroscopy to Assess Soil Quality Related to Long-Term Tillage Effects

Affiliations:

*Corresponding author:
W. Dean Hively, USDA-ARS Hydrology and Remote Sensing Laboratory, Bldg 007, Room 007, BARC-W, 10300 Baltimore Avenue, Beltsville, Maryland 20705
email hivelyd@ba.ars.usda.gov; phone 301-504-9031; fax 301-504-8931

Key words: hyperspectral; reflectance; soil quality; VNIR; tillage; organic matter; RCBD; tillage; aggregate stability; organic matter
ABSTRACT

Visible/Near-Infrared (VNIR) diffuse reflectance spectroscopy is emerging as an effective method for rapid evaluation of soil properties and may be promising for the simultaneous determination of soil quality indicators. This study employed VNIR diffuse reflectance spectroscopy to analyze treatment effects associated with long-term tillage experiments (plow-till vs. no-till) at three sites in New York State. Dried, ground soil samples collected from field plots were analyzed for VNIR reflectance as well as ten chemical and two physical parameters. Traditional analysis of variance (ANOVA) for complete block experiments was applied to reflectance data from each sequential 1-nm waveband from 420 to 2500 nm. Results revealed highly significant differences in soil brightness associated with tillage treatments at two of three sites, with no-till soils averaging 4% darker than plowed soils across measured wavelengths. ANOVA analysis of reflectance first derivatives demonstrated significant tillage-related variation in the shape of absorption features. Laboratory analysis of the samples revealed increased organic matter, P, K, Mg and Mn, decreased Al, Ca, Cu, and Fe, lower pH, and increased small aggregate stability in the no-till treatments. Partial least squares regression (PLS) analysis was used to determine predictive relations between VNIR data and measured soil parameters. Results indicated that soil organic matter, Al, Mn, and pH had the strongest association with tillage-related variability in VNIR reflectance. VNIR diffuse reflectance spectroscopy shows promise for the assessment of important soil quality indicators, especially if based on larger calibration data sets.
INTRODUCTION

Visible/Near-Infrared (VNIR) diffuse reflectance spectroscopy of soils is emerging as a rapid and cost-effective method for determination of soil properties (Shepherd and Walsh, 2002). It is particularly useful when large numbers of observations are required to accurately characterize an area or when the cost of analysis is high. Both VNIR (generally 350-2500 nm) and mid-infrared (generally 2500-25000 nm) reflectance data have been successfully used to predict a variety of soil characteristics, including: organic and inorganic C (Brown et al., 2005), C, N, pH and biological activity (Reeves et al., 2001); Fe, Cd, Cu, Ni, and Zn (Siebielec et al., 2004); C, N, extractable Ca, and cation exchange capacity (Chang et al., 2001), manure nutrient concentrations (Reeves and Van Kessel, 2000), mineralogy (Brown et al., 2006), and biological measures (Mimmo et al., 2002). The reflectance signal is affected by soil moisture content, soil particle size distribution, and parent material (Baumgardner et al., 1985; Ben-Dor, 2002; Chang et al., 2001; Whiting et al., 2003), as well as soil development, carbonate content, and iron oxide features (Leone and Sommer, 2000). Soil reflectance has also been shown to correlate strongly with soil organic matter content (Reeves et al., 2002).

Following collection of reflectance data, a variety of post-processing methods such as smoothing and derivative computation can be employed to increase the signal-to-noise ratio (Tsai and Philpot, 1998). Transforming the reflectance by calculating a first derivative (Dawson and Curran, 1998; Tsai and Philpot, 2002) generally improves analytical accuracy. Continuum removal (e.g., Mutanga et al., 2004) can be used to compensate for baseline shift among reflectance spectra. Additionally, various researchers convert reflectance to optical density ln(1/R) prior to analysis (e.g., Reeves and Van Kessel, 2000). Principal components analysis and partial least squares
regression can be used to develop correlations between observed spectral data and measured soil properties (Chang et al., 2001; Shepherd and Walsh, 2002).

Soil quality assessment is becoming of increasing interest among scientists and farmers (Andrews et al., 2002; 2004). Soil quality includes an inherent and a dynamic component (Carter, 2002; Larson and Pierce, 1991). The former is an expression of the soil forming factors. Dynamic soil quality, on the other hand, generally refers to the condition of soil that is changeable in a short period of time by human impact, including agricultural management practices (Karlen et al., 1997; Mausbach and Seybold, 1998).

Soil quality is best assessed through soil properties that are sensitive to changes in management (Larson and Pierce, 1991). Recent United States soil conservation legislation explicitly addresses concerns related to soil quality and emerging programs include farmer payments for soil quality enhancement (NRCS, 2005). Rapid quantitative assessment is therefore a desirable aspect of soil quality research and government programs.

The physical structure of a soil plays an integral role in controlling chemical and biological processes (Dexter, 2004; Dexter and Czyz, 2000). A high proportion of stable aggregates in an agricultural soil is desirable, especially in fine- and medium-textured soils, as they sustain a range of pore sizes and promote aeration, water infiltration, and drainage (Kemper and Rosenau, 1986), as well as better soil workability, seed bed quality (Topp et al., 1997), and easy root penetration (Czyz, 2004). In turn, biological and chemical processes, such as root growth, organic matter turnover, macrofauna activity, bacterial and fungal proliferation, and cation charge density on the exchange complex influence pore size distribution, density and stability of soil structure (Magdoff and van
Conventional tillage systems can cause rapid loss of soil organic matter and degrade soil structure (Moorman et al., 2004). Reduction in tillage intensity generally brings about higher aggregate stability, porosity, abundance of root channels and macrofauna burrows, infiltrability and water holding capacity (Bessam and Mrabet, 2003; Liebig et al., 2004).

This study combined VNIR hyperspectral sensing and classical analysis of variance (ANOVA) to evaluate tillage treatment effects on measures of soil quality, in the context of complete block agronomic field experiments such as are as commonly used to evaluate agricultural practices (van Es and van Es, 1993). Soil samples were collected from three locations in New York State, where long-term (13- to 32-year) experiments contrasted plow-till and no-till tillage treatments under continuous maize (Zea mays L.) production. Previous analyses of these experiments have documented the effect of tillage on soil hydraulic properties (van Es et al., 1999) and maize yield. The objectives of this study were (1) to evaluate the ability of VNIR diffuse reflectance spectroscopy to detect changes in soil quality, specifically plow-till vs. no-till tillage treatments, and (2) to compare variation in VNIR reflectance with observed soil chemical and physical quality measures.

MATERIALS AND METHODS

Sites and Sample Collection

Soil samples were collected in the spring of 2004 (April 22 to May 7) from three long-term tillage experiments in New York State (Fig. 1). The experiments contrast plow-till (moldboard plow) and no-till (zero-tillage) management of continuous maize (Zea mays L.) plots. Tillage treatments had been maintained for 13 years at two of the
sites, located in Aurora, NY (42°43’ N, 76°39’ W) and Willsboro, NY (44°23’ N, 73°23’ W). A spatially-balanced complete block (SBCBD) design (van Es et al., 2003; van Es and van Es, 1993) was employed to establish four (Willsboro) or six (Aurora) replications of plow-till and no-till treatments. Management of these two sites is reported in further detail in van Es et al. (1999), and was based on standard Cornell Cooperative Extension recommendations for fertility and pest management.

At a third site, located in Chazy, NY (44°53’ N, 73°28’ W), tillage treatments had been maintained for 32 years. In addition to tillage, secondary treatment data from the Chazy site allowed the contrast of 32 years of silage harvest (whole plant removal) versus grain harvest (stover remained on the field). A standard randomized complete block (RCBD) design with sixteen 6 x 15.2 m plots was employed to establish four replications of each tillage-harvest combination. Maize residues in plow-till plots were incorporated during springtime tillage (moldboard and disk), and were left on the surface in no-till plots.

The soil at the Willsboro site is classified as a glacio-lacustrine Muskellunge clay loam (fine, illitic, frigid, Aeric Ochraqualfs) and at the Aurora site as a glacial till-derived Honeoye-Lima silt loam (fine-loamy, mixed, mesic, Glossoboric Hapludalfs). Soil at the Chazy site is classified as Raynham silt loam (coarse-silty, mixed, active, nonacid, mesic Aeric Epiaquepts). All of the sites are tile drained. Climate in the region is humid continental, with approximately 110 cm of precipitation falling annually.

Within each plot one soil sample was collected from a non-trafficked inter-row. Approximately 500 cm3 of topsoil (0-7 cm) was carefully removed, placed in a plastic container, and stored under 2°C refrigeration. Samples were subsequently air-dried (24 hours in a 60°C oven) and passed through a sample splitter. One half was analyzed for
soil aggregate stability. The other half was ground to pass a 2-mm screen and was analyzed for soil nutrient content and hyperspectral reflectance.

4 VNIR Spectroscopy

The diffuse reflectance of each sample was recorded using a FieldSpecPro hyperspectral sensor (FieldSpecPro Instrument #6368, calibration 1, manufactured by Analytical Spectral Devices, Inc., Boulder, Colorado; ASD, 1997) that was kept in a climate-controlled room. This instrument uses one silicon diode array for shorter VNIR wavelengths (350-1000 nm) and two scanning indium–gallium–arsenide arrays to span the shortwave infrared (SWIR1: 1000-1700 nm; SWIR2: 1700-2500 nm), coupled with a fiber optic cable and light source, to measure the reflectance of target soil samples. Spectral data for each sample consisted of 2151 sequential reflectance values recorded in 1-nm increments.

Oven-dried soil samples were ground to pass a 2-mm screen, and allowed to equilibrate with ambient temperature (21.8 to 22.4°C) and humidity (43 to 51%) prior to sensing. Soil was spooned into 4-cm diameter optical-quality petri dishes (Electron Microscopy Services Cat#70674-52, manufactured by Willco Wells B.V., Amsterdam, Netherlands), and reflectance was recorded through the borosilicate glass bottom of each dish. A ‘muglamp’ sensor attachment (http://www.asdi.com/products-accessories-HISP.asp) was used to hold a halogen light source at a constant angle from the fiber-optic sensor cable that connected to the sensor. The fiber-optic sensor viewed the sample at 90°. A precision-milled sample platform mounted to the muglamp held the sample dishes at a constant distance of 1.5 cm above the surface of the muglamp’s glass viewport, approximately 40 mm from the light source and optical cable.

The sensor was programmed to average five sequential spectrum readings into each of ten consecutively saved output files. These files were subsequently averaged in
post-processing to yield one average reflectance spectrum (1-nm resolution) for each soil sample (‘untransformed data’). This method was shown to provide adequate control of signal noise attributable to fluctuations in instrument line voltage. Additionally, rotation of the sample was shown to have a negligible effect on the reflectance signal.

Spectral domain filtering was applied to the averaged reflectance measurements to remove signal noise using the S-Plus 6.1 statistical package (Insightful Corporation, 2001). Each 1-nm reflectance datum (weighted at 0.2) was averaged with four neighboring values to each side, resulting in a moving average of nine data points. A first derivative of the smoothed reflectance data was subsequently calculated using the Savitsky-Golay algorithm using Unscrambler 9.2 (Camo, 2005), weighing one point to each side. The untransformed and smoothed-first-derivative datasets were then clipped to remove wavelengths near the edges of sensor ranges (removed: 350-420 nm; 961 to 1019 nm; 1771-1829 nm and 2481 to 2500 nm).

S-Plus 6.1 was used to perform sequential RCDB analysis of variance (ANOVA) for site and treatment effects, using data from each sequential 1-nm waveband. Results were recorded as wavelength-specific ANOVA p-values and R^2 ($\alpha = 0.05$). The Unscrambler 9.2 software package was used to perform partial least squares (PLS1) regression with cross-validation to obtain predictions of soil analytical results from spectral data. The number of PLS factors was limited to two in order to avoid over-fitting the small dataset.

Nutrient Analysis

Oven-dry soil samples were submitted to the Cornell Nutrient Analysis Laboratory, where they were ground to pass a 2-mm screen. Nutrients were analyzed by colorimetric methods following Morgan’s extraction (1N NaOH, pH 4.8; Lathwell and Peech, 1965), providing measured concentrations (mg L$^{-1}$) of Al, Ca, Cu, Fe, P, K, Mg Mn, and Zn. Organic matter (%) was determined by loss on ignition, and pH was
determined using a 1:1 soil-to-water extract. Standard RCBD ANOVA analyses were used to test for differences among site and treatment means, using S-Plus 6.1.

Aggregate Stability

Samples of air-dry soil were first crumbled through an 8-mm sieve. Using stacked sieves of 2 mm and 0.25 mm and a catch pan, the soil samples were then shaken for 10 s on a Tyler (Mentor, OH, USA) Coarse Sieve Shaker. Fractions of small (0.25 – 2 mm) and large (2 – 8 mm) aggregates were retained and oven-dried at 40°C. Single layers of aggregates were spread on a 2 mm sieve (large aggregates) and a 0.25 mm sieve (small aggregates). Four sieves at a time were placed 0.5 m below a 0.59 m diameter rainfall simulator (Ogden et al., 1997; van Es et al., 2003) which delivered 12.5 mm of water as 4 mm drops in 300 s. Each sieve received 1.9 J of energy over a 300 s simulated rainfall period, based on 0.164 mJ of energy delivered per single drop from a height of 0.5 m. Stones retained in the sieve and slaked soil material that fell through the sieve into a filter funnel were each collected, dried and weighed, and the fraction of stable aggregates was calculated using:

\[
WSA = \frac{w_{\text{stable}}}{w_{\text{total}}}, \text{ where}
\]

\[
w_{\text{stable}} = w_{\text{total}} - (w_{\text{slaked}} + w_{\text{stones}})
\]

The variables \(w_{\text{stable}}, w_{\text{total}}, w_{\text{slaked}}\) and \(w_{\text{stones}}\) are the dry weights of stable soil aggregates, total aggregates tested, aggregates slaked through the sieve, and stones remaining in the sieve after the test, respectively. Standard RCBD ANOVA analyses were used to test for differences among site and treatment means using S-Plus 6.1.
RESULTS AND DISCUSSION

Tillage Effect on Soil Reflectance

Reflectance of the soil samples generally increased with tillage from near 10% in the visible wavelengths to a maximum of 30 to 60% in the NIR, depending on site (Figs. 2 to 5). Seven absorption features were apparent: 1) 450 to 500 nm, 2) 550 to 650 nm, 3) 750 to 850 nm, 4) 1350 to 1500 nm, 5) 1850 to 2000 nm, 6) 2150 to 2300 nm, and 7) 2300 to 2400 nm (Fig. 2a). Although direct interpretation of spectrum shape is difficult in the VNIR wavelength range where spectral features reflect combined overtones and harmonics of chemical bond vibrations that are observed directly in the mid infra-red (2500 to 25,000 nm), features 1 and 2 generally relate to soil color, features 4 and 5 to soil moisture, and feature 7 to soil moisture and/or soil organic matter content (RSI, 2005). Substantial noise was evident below 500nm and above 2300nm due to low signal intensity.

For statistical purposes, a standard ANOVA analysis for RCBD experimental designs was used to compare reflectance data within each sequential 1-nm waveband. The ANOVA output is presented graphically in plots b and c of Figs. 2 and 6, and plots c and d of Figs. 3, 4 and 5. Site, tillage, and site*tillage interaction were all found to be highly significant factors (Fig. 2). The site effect is likely attributable to the sensitivity of VNIR reflectance to soil particle size distribution (Ben Dor, 2002) and to inter-site differences in soil type and soil characteristics (Table 1). Because the site effect was significant, tillage treatment effects were subsequently analyzed on a within-site basis.

Within sites, the untransformed reflectance data (plot a of Figs. 3 to 5) exhibited significant tillage-associated variation, with effects seen largely as differences in overall soil brightness (magnitude of reflectance) rather than as changes in specific absorption features (spectrum shape). No-till soils at the Chazy and Willsboro sites were on average
3.8% and 4.1% darker than plowed soils (plot b of Figs. 3 to 5), presumably owing to increased organic matter content (see nutrient analysis data, below). At the Aurora site (Fig. 5) no significant differences were detected. Using ANOVA analysis, significant tillage effects ($\alpha = 5\%$) were uniformly observed between 500 to 2500 nm at the Chazy and Willsboro sites (plot c of Figs. 3 and 4). The correlation (R^2) between tillage treatment and soil reflectance at the Chazy and Willsboro sites ranged from 30% to 75% depending on wavelength (plot d of Figs. 3 and 4) with the greatest correlation generally observed at higher wavelengths.

First-derivative data (Figs. 7 to 9) indicate that tillage also had a significant effect on the shape of reflectance features, explaining up to 80% of observed tillage-associated variation in some wavelength bands. Expectedly, the greatest tillage-associated variation in reflectance first derivatives occurred in the wavebands associated with apparent absorbance features. The correlation between tillage treatment and first derivative of reflectance may perhaps be attributable to tillage-induced variation in soil fertility and/or organic matter content (see below).

At the Chazy site, the harvest treatment (grain vs. silage) was not significantly associated with observed variation in soil reflectance (Fig. 6), although the primary tillage treatment clearly affected soil reflectance. The maize stover that was returned to the grain harvest plots evidently did not alter soil brightness or absorption features, which also reflects the less-pronounced effects of harvest treatment on soil properties compared to the tillage effects (Table 1).

Tillage Effects on Soil Nutrients

Significant ($\alpha = 0.05$) inter-site differences were detected for pH, OM, and all measured elements except Ca and Cu (Table 1). Soil type varied among the sites, and the observed significant effects of site and site*tillage interaction are likely attributable to variation in genetic soil composition. Within site, significant tillage effects were
observed for pH, OM, and for all elements except Zn, although the level of significance was variable among sites (Table 1). The organic matter content of no-till plots was increased by 1.1 to 1.8% over plow-till in all cases. No-till plots also tended to exhibit higher P, K, and Mg, as well as lower pH, Al, Ca, Cu, and Fe. Interestingly, only the Aurora site showed a significant effect of tillage on Cu, Fe, and K, and only that site showed no significant effect on pH or VNIR reflectance.

At the Chazy site, the harvest treatment (grain vs. silage) was associated with significant differences in OM, P, K, Mg, and Al (Table 1), but only within the no-till treatment. In each of these cases the silage harvest treatment was associated with reduced OM and soil nutrients, as might be expected following whole plant removal. In both the plow-till and no-till plots, soil K contents were lower where whole plants were removed (silage) than where residues were returned (grain), presumably due to the long-term removal K in contained in maize stalks.

Tillage Effects on Soil Aggregate Stability

Stability of both large and small aggregates varied among sites (Table 1), likely due to differences in soil texture. Within sites, at all three locations, the no-till treatment had significantly increased small aggregate stability, presumably due to the accumulation of organic matter and stabilizing glues (Magdoff and van Es, 2000). The large aggregates, which were observed to be generally less stable than small aggregates, showed increased stability after 32 years of no-till conditions (Chazy) but showed no significant tillage-associated variation at the 13-year study sites (Aurora and Willsboro).

At the Chazy site, the harvest treatment showed a somewhat significant ($\alpha = 0.1$) effect on small aggregate stability within the plow-till treatment (Table 1). However, there was no significant harvest effect on small aggregate stability within no-till plots or overall, and no significant effect on large aggregate stability in either tillage treatment.
Correlation of VNIR Reflectance with Soil Fertility and Aggregate Stability

Soil nutrient content and aggregate stability were associated with variability in spectral reflectance, as determined by PLS analysis (Table 2). Some nutrients (e.g. Mg, Fig. 11) exhibited very different concentrations at the three research sites, leading to high PLS R^2 values when all samples were included (Fig. 11a), but did not correlate well with spectral features within site (Chazy data, Fig. 11b). These nutrients (Fe, K, Mg), as well as nutrients that demonstrated little overall correlation with reflectance (Ca, Cu, Zn) were therefore thought to have little effect on the significant correlation between reflectance data and tillage treatments. Other soil factors (e.g., organic matter OM, Fig. 12) demonstrated significant within-site correlation with spectral reflectance (Chazy data, Fig. 12b). Organic matter content was clearly correlated with reflectance variability ($R^2 = 0.76$), and Al, Mn, pH, P, and small aggregate stability were also significant factors ($R^2 = 0.46, 0.45, 0.30, 0.27,$ and 0.42, respectively). It is noted that P is thought to have little direct effect on VNIR reflectance (RSI, 2005), and the correlation between P and spectral data is therefore likely attributable to covariation between phosphorus concentrations and organic matter content ($R^2 = 0.54$).

CONCLUSIONS

VNIR diffuse reflectance sensing of ground, air-dried soil samples collected from replicated agronomic field experiments detected highly significant tillage-associated variability in soil reflectance (420 to 2480 nm). No-till soils were on average 4% darker than plowed soils across all measured wavelengths, perhaps due to the accumulation of organic mater in the no-till plots (1.8, 1.7, and 1.1% greater than plowed plots at the Chazy, Willsboro, and Aurora sites, respectively). First derivative results identified a number of wavelengths where tillage affected the shape of the reflectance spectra. In
addition to reflectance, tillage treatments also had clear effects on soil fertility indicators, organic matter content, and small aggregate stability. For all indicators, no-till treatments were associated with better soil quality. Furthermore, differences were more pronounced in the 32-year trial (Chazy) than in the 13-year trials (Aurora and Willsboro). Correlations derived from PLS analysis indicated that, out of the variables measured in this study, soil organic matter, aluminum and manganese concentrations, and pH had the greatest association with tillage-related variability in soil reflectance.

The harvest treatment (grain vs. silage) had no significant effect on soil reflectance, and only a minor effect on small aggregate stability and soil fertility. Overall, the effect of 32 years of continuous tillage had a much larger effect on the soil characteristics than the effect of 32 years of removal vs. retention of maize stover. Although the number of available samples (n=36) was too limited to support an accurate prediction of soil properties from spectral reflectance data, PLS regression analysis indicated a strong correlation between reflectance and organic matter content ($R^2 = 0.76$), which is a critical soil quality indicator (Magdoff and van Es, 2000). It also showed a moderate correlation with Al, Mn, pH, P, and small aggregate stability. VNIR diffuse reflectance spectroscopy shows an ability to assess management-induced changes in some soil quality indicators, and, especially if based on larger calibration data sets, shows promise as a tool for rapidly identifying variability in soil quality parameters.

ACKNOWLEDGEMENTS

The authors thank Beth Gardner for assistance with statistical programming, and Pierre Gérard-Marchant for assistance with preparation of figures. Thanks to Jim Reeves for assistance with PLS regression. This project was funded in part by the Cornell Computational Agriculture Program.
REFERENCES

Quantification of tillage and landscape effects on soil carbon in small Iowa

Kruger National Park, South Africa, using continuum-removed adsorption features.

Remote Sensing of Environment 89:393-408.

USDA-Natural Resources Conservation Service. Washington, DC.

Reeves, B.B. III, G.W. McCarty, and T. Mimmo. 2002. The potential of diffuse
reflectance spectroscopy for the determination of carbon inventories in soils.

Environmental Pollution 116:S277-S284.

Reeves, J.B. III, G.W. McCarty, and V.B. Reeves. 2001. Mid-infrared diffuse reflectance
spectroscopy for the quantitative analysis of agricultural soils. J. of Agric. Food
Chem. 49:766-772.

Reeves, J.B. III, and J.S. Van Kessel. 2000. Near-infrared spectroscopic determination of
carbon, total nitrogen, and ammonium-N in dairy manures. Journal of Dairy Science
83:1829-1836.

Siebielec, G., G.W. McCarty, T.I. Stuczynski, and J.B. Reeves III. 2004. Near- and mid-

infrared diffuse reflectance spectroscopy for measuring soil metal content. J. Env.

Qual. 33:2056-2069.

Shepherd, K.D., and M.G. Walsh. 2002. Development of reflectance spectral libraries for

conditions on corn as detected by hyperspectral reflectance. Remote Sensing of

Environment 80:213-224.

Tsai, F., and W. Philpot. 2002. A derivative-aided hyperspectral image analysis system

van Es, H.M. and R.R. Schindelbeck 2003. Field Procedures and Data Analysis for the

Cornell Sprinkle Infiltrometer. Cornell University, Department of Crop and Soil

Sciences Extension Publication R03-01. 8 pages.

van Es., H.M., and C.L., van Es. 1993. Spatial nature of randomization and its effects on

van Es, H., Gomes, C, Sellmann, M, and van Es, C. 2006. Spatially-Balanced Designs for

TABLES

Table 1. Mean soil test values for organic matter (OM %), pH, and soil nutrients (mg kg\(^{-1}\)), and aggregate stability (%) within tillage (plow-till vs. no-till) and harvest (grain vs. silage) treatments.

<table>
<thead>
<tr>
<th></th>
<th>Tillage</th>
<th>Harvest(a)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Aurora</td>
<td>Willsboro</td>
</tr>
<tr>
<td></td>
<td>Plow</td>
<td>No-till</td>
</tr>
<tr>
<td>OM †</td>
<td>3.8</td>
<td>4.9 *</td>
</tr>
<tr>
<td>pH ‡</td>
<td>7.8</td>
<td>7.7</td>
</tr>
<tr>
<td>P §</td>
<td>6.9</td>
<td>17.6 *</td>
</tr>
<tr>
<td>K ¶</td>
<td>51.1</td>
<td>95.1 *</td>
</tr>
<tr>
<td>Mg ¶</td>
<td>293</td>
<td>329 **</td>
</tr>
<tr>
<td>Ca ¶</td>
<td>3417</td>
<td>2762</td>
</tr>
<tr>
<td>Fe ¶</td>
<td>0.8</td>
<td>0.3 *</td>
</tr>
<tr>
<td>Al ¶</td>
<td>11.4</td>
<td>7.5 *</td>
</tr>
<tr>
<td>Mn ¶</td>
<td>23.8</td>
<td>29.0 *</td>
</tr>
<tr>
<td>Zn ¶</td>
<td>1.4</td>
<td>0.7</td>
</tr>
<tr>
<td>Cu ¶</td>
<td>2.1</td>
<td>1.6 *</td>
</tr>
<tr>
<td>Large Aggregates ††</td>
<td>22.7</td>
<td>35.0</td>
</tr>
<tr>
<td>Small Aggregates ‡‡</td>
<td>19.2</td>
<td>48.7 *</td>
</tr>
</tbody>
</table>

* Treatment means significantly different at \(\alpha = 5\%\)
** Treatment means significantly different at \(\alpha = 10\%\)
† Organic matter by loss on ignition
‡ 1:1 soil:water solution
§ Orthophosphate by autoanalysis following Morgan's extraction (1N NaOH, pH 4.8; Lathwell and Peech, 1965)
¶ ICP analysis following Morgan's extraction
Using split-plot data from the Chazy site
†† 2 to 8 mm aggregate size
‡‡ 0.25 to 2 mm aggregate size
Table 2. Accuracy (R^2) of partial least squares predictions of soil nutrient concentrations and aggregate stability using untransformed and first derivative reflectance data.

<table>
<thead>
<tr>
<th></th>
<th>Untransformed</th>
<th></th>
<th>First Derivative</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Sites</td>
<td>Chazy</td>
<td>All Sites</td>
<td>Chazy</td>
</tr>
<tr>
<td>Organic Matter †</td>
<td>0.81</td>
<td>0.76</td>
<td>0.84</td>
<td>0.89</td>
</tr>
<tr>
<td>pH ‡</td>
<td>0.86</td>
<td>0.30</td>
<td>0.87</td>
<td>0.56</td>
</tr>
<tr>
<td>Phosphorus §</td>
<td>0.25</td>
<td>0.27</td>
<td>0.22</td>
<td>0.12</td>
</tr>
<tr>
<td>Potassium ¶</td>
<td>0.30</td>
<td>0.00</td>
<td>0.32</td>
<td>0.17</td>
</tr>
<tr>
<td>Magnesium ¶</td>
<td>0.79</td>
<td>0.01</td>
<td>0.80</td>
<td>0.18</td>
</tr>
<tr>
<td>Calcium ¶</td>
<td>0.01</td>
<td>0.05</td>
<td>0.03</td>
<td>0.07</td>
</tr>
<tr>
<td>Iron ¶</td>
<td>0.52</td>
<td>0.04</td>
<td>0.55</td>
<td>0.07</td>
</tr>
<tr>
<td>Aluminum ¶</td>
<td>0.87</td>
<td>0.46</td>
<td>0.85</td>
<td>0.50</td>
</tr>
<tr>
<td>Manganese ¶</td>
<td>0.53</td>
<td>0.45</td>
<td>0.54</td>
<td>0.45</td>
</tr>
<tr>
<td>Zinc ¶</td>
<td>0.18</td>
<td>0.06</td>
<td>0.20</td>
<td>0.08</td>
</tr>
<tr>
<td>Copper ¶</td>
<td>0.01</td>
<td>0.12</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Large Aggregates ††</td>
<td>0.57</td>
<td>0.18</td>
<td>0.56</td>
<td>0.32</td>
</tr>
<tr>
<td>Small Aggregates ‡‡</td>
<td>0.23</td>
<td>0.42</td>
<td>0.23</td>
<td>0.47</td>
</tr>
</tbody>
</table>

† Organic matter by loss on ignition
‡ 1:1 soil:water solution
§ Orthophosphate (mg L$^{-1}$) by autoanalysis following Morgan's extraction
¶ ICP analysis following Morgan's extraction
†† 2 to 8 mm aggregate size
‡‡ 0.25 to 2 mm aggregate size
LIST OF FIGURES

Fig. 1. Map of the study locations.

Fig. 2. Effect of site and tillage on soil reflectance.

Fig. 3. Effect of tillage on soil reflectance at the Chazy site.

Fig. 4. Effect of tillage on soil reflectance at the Willsboro site.

Fig. 5. Effect of tillage on soil reflectance at the Aurora site.

Fig. 6. Effect of the harvest treatment on soil reflectance at the Chazy site.

Fig. 7. Effect of tillage on first derivative of soil reflectance at the Chazy site.

Fig. 8. Effect of tillage on first derivative of soil reflectance at the Willsboro site.

Fig. 9. Effect of tillage on first derivative of soil reflectance at the Aurora site.

Fig. 10. Effect of the harvest treatment on first derivative of soil reflectance at the Chazy site.

Fig. 11. Partial least squares predictions of soil magnesium content (mg Kg$^{-1}$) for a) all sites (A = Aurora, W = Willsboro, C = Chazy) and b) Chazy only. Upper case lettering indicates plow-till plots, lower case indicates no-till plots.

Fig. 12. Partial least squares predictions of soil organic matter content (%) for a) all sites (A = Aurora, W = Willsboro, C = Chazy) and b) Chazy only. Upper case lettering indicates plow-till plots, lower case indicates no-till plots.
Figure 1.
Figure 2.

![Graphs showing soil reflectance and ANOVA P-value for tillage treatment effect, and percent of total variation attributed to tillage treatment effect.]
Figure 3.
Figure 4.
Figure 5.
Figure 6.

![Graph showing soil reflectance and statistical analysis results.](image-url)
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.

(a) Predicted Mg (mg kg-1) vs. Observed Mg (mg kg-1) with $R^2 = 0.01$

(b) Predicted Mg (mg kg-1) vs. Observed Mg (mg kg-1) with $R^2 = 0.79$
Figure 12.

(a) Predicted % OM vs. Observed % OM with $R^2 = 0.81$

(b) Predicted % OM vs. Observed % OM with $R^2 = 0.76$